
 
 

 

  

Abstract�—We describe the results of a modeling 
methodology that combines the formal choice-system 
representation of decision theory with a human player-focused 
description of the behavioral features of game play in Pacman. 
This predictive player modeler addresses issues raised in 
previous work [1] and [2], to produce reliable accuracy. This 
paper focuses on using player-centric knowledge to reason 
about player behavior, utilizing a set of features which describe 
game-play to obtain quantitative data corresponding to 
qualitative behavioral concepts. 

I. INTRODUCTION 
With this paper we present the results from a novel real-

time player modeling algorithm that attempts to predict each 
move that a human player makes in Pacman. These 
predictions are compared with actual player activity. We 
suggest that the results of this comparison form a model, and 
after enough instances of play, analysis of this model should 
form a valuable picture of player behavior. Whether they 
follow the predicted path or deviate from it, some insight 
should still be possible. 

Predictive player modeling works by considering the 
player�’s in-game goals as equivalent to some target function 
of the game state and calculating this function using 
observed player data [3], [4], [1]. Consideration of the 
player�’s goals or utilities is central to this; broadly speaking 
the predictive modeler will use real-time observation of play 
habits to determine player preference for competing 
potential game states. In [5] we discussed how games can be 
described using formal or semi-formal structured 
specification systems. By extension of this approach, we can 
use a decision theoretic formulation to model the short-term 
elements of the game that are important to a player �– the 
player�’s utilities �– and predict the player�’s next actions. That 
is, we can calculate a ranking for all the choices available to 
the player, based on the utilities associated with the game 
states produced by each choice. 

In other work [4], preference learning has been 
unsupervised, building the classes or features of preference 
through on-line learning. By contrast, in our algorithm 
definitions of player utilities in Pacman will be based on the 
game-play features described in section II.  

 
Ben Cowley is with the Centre for Knowledge and Innovation Research, 

Helsinki School of Economics, Fredrikinkatu 48a 9krs, 00100 Finland. 
(phone: +358 40 353 8339; e-mail: zenphd@gmail.com).  

Darryl Charles, Michaela Black and Ray Hickey are with the School of 
Information and Computer Engineering, University of Ulster, Coleraine, 
BT52 1HQ, United Kingdom. e-mail: {dk.charles; mm.black; 
rj.hickey}@email.ulster.ac.uk 

A. Previous Work 
Our original inspiration in formulating game-play in terms 

of Decision Theory came from [6]. Their approach combines 
a rational, utility-maximizing agent design, with a taxonomy 
of emotional states drawn from the literature [7]. Emotions 
are implemented as transformations of the decision-making 
situation described for the rational agent, thus empowering 
the agent to manipulate its own decision-making process, 
and effect non-rational behavior. In order to facilitate our 
approach, we have replaced the emotional part of the model 
with utility calculation functions �– in this paper they are 
derived from the features of play behavior described in the 
next section. 

This provides the major novelty of the approach �– 
although predictive player modeling has been done before, 
for example in [3], as far as we know there are no other 
attempts to incorporate knowledge gleaned from data mining 
of players�’ recorded games into the utility or preference 
calculation functions of the modeler. 

Our previous work had two main problems: the non-
empirical calculation of utilities in both papers, and the tree-
based approach of [2] for searching the game�’s possibility 
space. This evaluated temporal-sequences in post-hoc 
fashion, estimating qualities (like utility) of single states, and 
accumulating the estimations. For the first problem, it is 
clear that utilities should draw on observed behavior if 
possible, but the second problem may be less clear. 

One essential difference between Pacman and games like 
Chess or Draughts (where look-ahead trees have been tried 
and proven [8]) becomes apparent when evaluation of the 
utility of states is attempted. The locations of entities (the 
sum of which is referred to as a player�’s position in board 
games), in Pacman is not enough to fully describe the 
subtleties of the game because the game is not turn-based, 
and so the relative timings of parallel deterministic event 
sequences is important to play mechanics. Our features 
describe player behavior across multiple states, as in most 
cases the core behavior that a feature is trying to capture 
cannot be reasoned about from the perspective of a single 
state. Thus the estimation of most features has an inherent 
time-series structure and solves the second problem. 

Incorporating these features required a fundamental 
change to the algorithm because the original used post-hoc 
utility calculation. This means that the calculation of utility 
at a given depth only referenced the single state from the tree 
node at that depth. Thus, the relationship that the referenced 
state had with the features from the previous or next states 
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had to be inferred, if it was calculated at all. 
 This may work for game playing AI or bots, that have the 

aim of beating the player, but when the aim is to model the 
player some account must be made of the player�’s point of 
view. A human player�’s cognition has a strong time-
sequence orientation [9]. Also during faster, more stressful 
game-play some players may begin to focus on a select 
number of evolving features, and disregard the full scope of 
detail of the current state [10]. Thus in order to model the 
player our algorithm had to be altered; its operation is 
described in section III. 

In section IV we describe how the experiment was 
prepared and data collected. Then in section V we give the 
results of the tests, and describe how valuable player-related 
information can be extracted from the modeler�’s output. 
Finally section VI provides our conclusions. 

II. FEATURES OF GAME-PLAY 
Ultimately player utility represents the value of a process 

of play, for example the process of collecting all the Dots in 
an area, or getting a Pill then chasing Ghosts. Utility for a 
process is found by considering the sequence of states in 
which the process occurs, programmatically extracting some 
knowledge of what the player has been doing in that 
sequence, and applying some valuation to that knowledge. 

Knowing what the player does in a sequence of play 
requires codifying all the pertinent things they are able to do 
within the closed system of the game. For example, a player 
can usually move pieces or an avatar. The way they move 
very often has qualifiers, such as quick or aggressive 
movement. These can be codified as behavioral features.  

In more detail, data from players is described by in-game 
variables, logged at significant points of change in the game 
state. �‘Significant�’ in this case is defined as any action of 
any of the game agents which affects the state of game and 
cannot be interpolated from adjacent states in the log. 
Extracting features involves identifying player �‘behaviors�’ 
over sequences of one or more game state variables. 
Behaviors can be defined as macro level (i.e. more than one 
state change) game play actions within repeating situations. 
In other words, they are patterns of player action that could 
be observed to be consistent across repetitive game 
situations by a hypothetical third party observer. 

Our process for deriving features was to work from the 
general to the specific, a top-down approach that maximizes 
the chance of defining all the features necessary to express 
distinct player behaviors. The first step was to create a list of 
high-level behavioral traits that can be expressed, either 
positively or negatively and to varying degrees, in most 
games and by most players. The list comprises Aggression, 
Caution, Planning, Decisiveness, Thoroughness, Control 
Skill and Resource Hoarding, and is repeated with detail 
below. Having this list, we tried to posit distinct features of 
play in Pacman that represented a behavioral aspect from the 
list, as many as it seemed were plausible. A group of 
aggregate features was also specified to hold simple counts 

such as number of lives gained. 
The set of high-level traits was specified with regard to a 

generic concept of play in contemporary games, and thus 
applicable to any given player and game. To suitably limit 
the mode of investigation, the physical reactions of players 
(e.g. facial, galvanic skin response, other biometrics) were 
not recorded �– the only concern was how player actions 
reflect their interaction with the mechanics of a game. In 
studying how players interact with games we covered 
systems of play and modes of interaction [11], as well as 
generic motivations for play [12] and player type [13]. 
Considering these models together gave us a picture of the 
forms of behavior that can be expressed by most players in 
many games. The list was not designed to be complete but 
only be comprehensive enough to cover Pacman and yet still 
be generic; it is presented in no particular order: 

 
Aggression: describes forward and hasty action with 

respect to opponents or obstacles. In Pacman this must relate 
to how consistently and riskily a player chases after all the 
ghosts after eating a Pill. 

Caution: describes how much the player guards their 
avatar, lives, or other representation of failure risk. In 
Pacman, this might be how much distance they consistently 
keep between Pacman and the ghosts when not in the 
Hunting state. 

Planning: is achieving higher level goals with a 
premeditated, linked series of actions. A Pacman example 
could be luring Ghosts near to a Pill, then eating them all. 

Speed: primarily, this is how fast the player completes 
discrete segments of game play, be they levels, objectives or 
even moves (as in chess); secondarily, whether they divert 
from the �‘quickest-possible�’ approach for any reason. 

Chasing high score/optimal result: this would often be a 
meta-behaviour, of replaying the game to gain ever-higher 
scores. Classically, this is the key motivator in Pacman. 

Decisiveness: describes players who don�’t backtrack, or 
make oscillating-type movements. This goes to skill of using 
the controls also, but the distinction is that decisiveness 
operates on a macro scale. 

Thoroughness: is attempting to do or see everything 
available, also solving puzzles by exhaustion of 
combinations. This is hard to define in Pacman, since the 
only way to progress is to collect everything. 

Control Skill: means fine, precise and detailed command 
of control schemes, such as accuracy in a shooter or 
knowledge of hotkeys in an RTS. In Pacman, this is mostly 
how well corners are turned and Ghost near-misses are 
handled, and perhaps also how quickly local sections of Dots 
are cleared. 

Resource hoarding: games are often described as having 
an �‘economy�’: ammo and health in combat games, items and 
virtual currency in RPG�’s are just two examples. Resources 
in Pacman are hard to delimit from points, but lives and fruit 
are valid examples. Pills are often hoarded as �‘insurance�’, to 
deploy at strategic moments. 
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Under each of these generic headings, we developed a set 
of specifications of features of game play that pertain 
directly to Pacman, along with the group of simple aggregate 
features. Developing specifications involved first observing 
patterns of play in Pacman games, so that the various 
patterns of play performed in the game were known to us. 
The intent of the player in performing each pattern of play 
was associated with a generic behavior as listed above. A 
description of the pattern of play was written in natural 
language based on its observation and associated generic 
behavior. Having specified patterns of play, feature 
development then entailed finding and observing patterns in 
the logs of played games, and deconstructing their operation 
to the most atomic level possible so that each pattern of play 
could be codified as an algorithm. 

Working from the first principles of these specifications, 
features were implemented in C++ in our Pacman game 
engine. Thus reasoning about the specification of a 
behavioral feature inspired the algorithm which derived that 
feature. Most of the features were derived by the same basic 
algorithmic procedure; that is, iterating through the states 
from a raw data log file the algorithm searches for constraint 
harness parameters to satisfy. The constraint harness is a set 
of logic statements, and the parameters are simply numeric 
thresholds. An example is the initial constraint for the first 
Aggression feature, A1_Hunt Close To Ghost House: 
 
if( PacAttack && (  
myDist(xGhost[0],yGhost[0],xHse,yHse) < 3 ||  
myDist(xGhost[1],yGhost[1],xHse,yHse) < 3 )) 
 

This simply says execute the �‘then�’ portion of the �‘if�’ 
statement when Pacman is Hunting the Ghosts, and one 
Ghost is within a manhattan distance of 3 from the centre of 
their House. Within the �‘if�’ statement is more logic to induce 
whether Pacman is closing in on the House, and what 
happens when he gets there. If the right conditions are 
satisfied then the function increments a counter which is 
returned as the final result once the function has iterated 
through all the raw data. More complicated functions might 
look at a wider spread of the raw data, and try to meet more 
complicated constraints, but the algorithmic pattern is much 
the same for most features. 

We applied these features across only a few projected 
states of play, and constructed a mapping from the current 
game state to one weighted feature vector for each path in 
the look-ahead tree. These vectors represent the player�’s 
possible choices, and evaluating their utility allowed us to 
predict the player�’s most likely choice. The entire list of 
features used is described in Appendix A. 

III. ALGORITHM OPERATION 
The changes to our previous work described above 

implied an update to our modeling algorithm, reflected in the 
new decision theoretic equation (1), below. We replaced the 
summation of utilities for each state in a sequence with a 
single utility for the whole sequence, corresponding to one 

game-play feature. This update radically simplifies the 
formula by removing the requirement to specify the utility of 
every state. All that is needed is the sequences of states that 
comprise a possible course of action, which is equal to a 
single path from the look-ahead tree. However many of the 
original definitions [2] are still relevant to understanding, so 
a brief description follows. 

A rational player�’s decision making situation involves 
picking from a finite set of the alternative courses of 
action (or plans), that are available to execute. A member of 

such as  can be thought of as a plan consisting of 
consecutive moves extending to the future time . The 
(computational) limit on this look-ahead time will be  �– 
in our case  will almost always equate  since for any 
one plan, only Pacman�’s death or the end of the level will 
result in a cessation of planning. Such an action plan occurs 
in a state-delimited world, formalised as the set of all 
possible states of the world . So each  is a sequence of 
states , starting with a state �‘adjacent�’ to the current 
state and ending with . Since all the states considered in 
each decision-making situation are limited by  they 
form a subset of  which we call . To obtain the necessary 
ordering of  when selecting from  so that the sequence  
makes sense (since  is unordered), we identify each state 
by its distance in the future, i.e. . In terms of the look-
ahead tree,  is a path and  (the last state in ) is a leaf 
which can uniquely identify the path. 

In Pacman only the current state is known: no current 
information is hidden but future states depend on stochastic 
elements, so it is a game of semi-perfect information. Thus 
our probability function represents the uncertainty of the 
player as we project forward in time, resulting in a 
probability distribution  over the state space . This 
temporal projection is expressed as ; 
which means that the action  given the current state  
results in the probability of the projected states 

. Specifically,  will be the 
probability assigned by  to the state . 

This paper retains the definitions established in previous 
papers, but alters the application of utility. The utility 
function  now applies to an entire sequence-of-states or 
plan , rather than just one state: encoding the desirability to 
the player of the projected sequence and mapping it to 
numerical output .  is a member of the set  of 
all implemented features, and  will choose different 
features  depending on the states in plan  (i.e. some 
features are not relevant in some states).  maps states to 
a real number, and the summed output of multiple  gives 
the utility score of a plan : the best scoring plan predicts 
the next move. 

 (1) 
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We implemented this equation using a look-ahead tree �– 
described in the schematic in figure 1 below �– next we 
explain some aspects of how this works in Pacman. 

A. The Tree of Future Moves 
The goal of implementing equation (1) is to search the 

tree of utility-weighted future moves. Nominally, this tree 
would be built by finding all possible combinations of 
positions which the in-game actors can occupy when they 
move one step, and then iterating that calculation for a 
computationally tractable number of steps. Having enough 
steps required us to improve the execution speed of the 

algorithm. Standard methods for pruning a game theoretic 
look-ahead tree, such as the alpha-beta heuristic, are less 
applicable to time-based games. By considering the look-
ahead activity from the player perspective, we conceived an 
effective yet simple optimization. From the player�’s point of 
view, future ghost positions are a best a probability 
distribution: thus we do not need to calculate exhaustive 
look-ahead trees. Reduction of the data space dimensionality 
can be achieved by transforming the combination of Pacman 
and the Ghosts�’ possible moves into the set of Pacman�’s 
possible moves plus a probability distribution over the 
Ghosts�’ possible moves with respect to Pacman�’s moves. 

Now
t=0

1
t=1

mp
t=1

.  .  .

Build look-ahead tree up to a 
predefined depth D
At each ply t=i+1, number of 
states corresponds to the 
number of moves m that were 
possible for Pacman from all 
the parent states p at ply t=i

. . .

1
t=D

mp
t=D

.  .  .
To predict the direction of 
players�’ next move (i.e. a state 
at t=1), calculate utility of each 
path�’ from root to leaf in the 
tree

Now
t=0

1
t=1

1
t=D

...

This is one path A in the look-ahead 
tree, or one possible way for Pacman 
to move for the next D states.

utility(A) = f utility( f(A) )

Behavioural features from 
previous chapters were 
designed to work over a 
path, and so are used here 
to calculate utility.

Predicted 
action a = Direction(t=0 t=1) : max

utility(A1t=D)

:
utility(Akt=D)

Where each path A ends in one of k unique leaves from 
the look-ahead tree; and Direction() gives the next move 
direction for Pacman from the highest scoring path.

Where f is a feature defined in chapter 4, 
such as A4_Hunt Even After Pill Finishes

c

c

c

Fig.1. Schematic of the operation of the Decision Theoretic feature-based predictive player modeling 
algorithm. Multiple features contribute to the utility of each path in the tree, to evaluate action a.
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A random selection from this distribution is what drives 
Ghost movement in the game engine. Thus the functionality 
was readily available to calculate the Ghost positions in the 
look-ahead tree. We chose to select the highest probability 
position automatically. Since the choice mechanism for 
�‘real�’ Ghost movement was stochastic, stochastic choices in 
building the look-ahead tree could cause the predicted 
moves to diverge from actual movement, more than 
necessary. Although it was not necessary to predict exact 
Ghost locations, using approximately the right locations 
would improve the relevance of many of the features 
calculated. Also, all probabilities of future states were 
rendered equal due to the way the look-ahead tree was 
calculated with respect to Ghost movements. 

By branching only for the potential moves of Pacman, and 
not the Ghosts, we reduce tree branching by a factor of at 
least ~2.25 for every Ghost. The tree branching factor 
corresponds to the number of possible moves for all actors 
considered at each step, which is equal to the connectedness 
of the square the actor is in. Our test-bed game map has 182 
navigable squares. Of these, 143 are connected to 2 squares; 
32 are connected to 3 squares; and 7 are connected to 4 
squares. Therefore, if we consider the future moves of a 
number of actors , the average branching factor would be 
given by equation (2): 

 (2) 

We only consider the human player, so the nominal 
average branching factor equals 2.25. In a given level or 
game players will traverse each map square more than once, 
and the frequency of traversal will vary across the map. By 
their nature, the junction squares will be traversed more 
often, which implies the average branching factor will be 
higher than given by equation (2). Indeed in later tests when 
we analyzed the time taken at each depth of tree search, 
every increase of depth by 1 multiplied the time taken to 
calculate the algorithm for a single state by ~2.75. That 
implies that the actual branching factor is ~2.75 on average.  

Finally, in look-ahead tree terms equation (1) specifies the 
tree of potential next states up to a given depth and uses 
behavioral features adapted to work over short sequences of 
states, to return a utility value for an entire path of the future 
moves tree. Thus the predicted next move, the first in the 
highest-scoring path a, corresponds to the direction that 
leads to the highest utility and is the final output of our 
algorithm. This was tested as follows. 

IV. EXPERIMENTAL SET UP 
Data for the experiment was composed of the logged 

games of 37 volunteer players from among the under-
graduate classes in the host university. They were also given 
a short survey to ascertain the following personal details. 

• Sex 
• Age 
• Gaming habit, choice of: Hardcore, Casual, No Idea 

• Pacman Experience, choice of: Newbie, Beginner, 
Intermediate, Expert 

• Top 3 game-play styles enjoyed; unrestricted answer 
• One style of game play hated; unrestricted answer 
The last two questions were not restricted to pre-defined 

game styles, because it was felt that player understanding of 
the terms describing styles of game play is so variable that 
better results would be obtained by allowing players to use 
their own terms and interpreting them categorically. 

A. Game Description 
Although it is a common game, the Pacman test bed used 

was an interpretation of the original Namco game rather than 
a clone, and so below we describe our version. In all 
versions of Pacman the goal is to move around the game 
level and obtain all the collectables, thus progressing to the 
next level. Points are awarded for collectables and eating 
Ghosts. Our version of Pacman�’s game play is described in 
the following list (Initial Caps are used to describe game 
entities and their actions in this description; �‘the player�’ and 
�‘Pacman�’ are inter-changeable terms). 
The game world is a 20x20 matrix which constitutes a level, 

and each element of the matrix can be Wall, Pill, or Dot. 
Pacman and the Ghosts (the in-game actors) Move about the 

level along two axes, horizontal and vertical.  
Pacman Eats Dots & Pills when he Moves over them.  
When a Dot or Pill is Eaten, it’s ‘element’ becomes empty. 
By Eating a Pill, Pacman switches the game state from one 

where he is vulnerable to the Ghosts (the normal state), to 
one where he is able to Eat the Ghosts (the Hunt state). 

If Pacman collides with a Ghost, he can Eat the Ghost if in 
Hunt state, otherwise Pacman is Eaten and loses a Life. 

Eaten actors re-spawn at their original start point, unless 
Pacman has run out of lives, when the game is over. 

Pacman must Eat all Pills and Dots to finish, whereupon the 
level ends whether or not the player was still within the t 
cycles started from recently Eating a Pill. 

Points are scored as follows: 10 per Dot, 50 per Pill, (100*(2 
^ Number of Ghosts Eaten)) per Ghost Eaten after a Pill. 

Ghosts start in a central box area called their ‘House’. 
Ghosts are permeable and do not interact with Dots or Pills 

or obstruct each other. 
Difficulty is measured by speed of Ghost movement, 

probability distribution for their movement direction, and 
length of Hunts conferred by Eating Pills. Ghost speed 
increases every 5 levels starting in the 2nd level. 
Probability changes 5 times after the initial setting, at the 
start of levels 2, 4, 7, 11 and 16. Length of Hunts is a 
continuous function of the level number and quantity of 
Pills left in that level. This lends Ghosts some reactivity to 
the number of times they’ve been Hunted, as they run 
away for less time each Hunt. 

Ghosts move according to a pseudo-random probabilistic 
control function based on Pacman’s relative location and 
the (increasing) difficulty level. In the normal game state, 
the probability of moving closer to Pacman is higher than 
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the probability of moving to any other adjacent point. The 
direction is reversed when the game is in the Hunt state. 

V. TEST RESULTS 
The logged games of 37 players were tested off-line in 

order to allow full exploration of parameter combinations, 
which under certain settings required up to 32 hours of 
computation1. If testing had been performed during actual 
play, computational constraints would never have allowed 
any deep look-ahead tree searching. The exploratory 
analysis of the parameters of the algorithm formed the initial 
stage of testing, and is explained in greater detail in [14].  

Once we established optimal values for algorithm settings, 
and determined the features to be included in utility 
calculation, we tested the set of archived games. In order to 
allow algorithm settings time to converge, we excluded from 
testing any game that had only two levels or less. To 
illustrate the performance of the algorithm over a single 
game, figure 2 shows the running accuracy total that is 
obtained every state by the formula: number of correct 
predictions / number of states. 
 

 
 
Fig.2. Running total for prediction algorithm accuracy on a single game. 
 

As this figure shows, accuracy varies for several hundred 
states (the average number of states per level was 327) and 
then settles into a small range. Since it drops from 100% in 
the first few states, it is capable of high accuracy 
immediately and does not have to learn accurate predictions. 
The accuracy results for all games in the archived test-set are 
shown in figure 3, giving a clear impression of the overall 
level of accuracy achieved, and the variation between games 
that can occur even for a single player. The final accuracy 
from all games was 70.5%: this represents a lift of ~26% 
from the default value of ~44% that would be obtained by 
random guesses of next direction at every position on the 
game map. The output of the tests gave the raw data 
necessary to begin interpretation of the behavior of players. 

A. Player Observations 
The core of our approach involved predicting player 

 
1 At depth of 9, look-ahead tree search took ~14 seconds/state; test 

games were about 9000 states. 

actions and comparing these predictions with actual player 
activity. The validation of these predictions forms a model 
with the ultimate aim that over enough instances of play this 
model would embody valuable information on player 
behavior. The value of this information is based on the 
features describing game-play, which the modeler used to 
reason over players�’ actions. The log of the player�’s game 
can thus be composed into a set of occurrences of the 
features describing their behavior, and the patterns of 
occurrence can be interpreted to give an insight into the 
player at an even higher level. 
 

 
 
Fig.3. The best accuracy scores for the 105 archived games from 37 players. 
 

Categorical partitions of the players, based on the self-
reported survey data Gamer kind, Pacman experience, Age 
and Sex, all correlate negatively with prediction accuracy as 
shown in table 7.8. Only Age is anywhere near a strong 
correlation though. Two thirds, or 6 of the players aged over 
25 years are in the lowest 10 predicted accuracies. 
 
TABLE 1 SPEARMAN COEFFICIENTS AND P-VALUES FOR CORRELATIONS OF 

CATEGORICAL AND ACCURACY DATA. 
Player Data Category Spearman 

Coefficient 
2-tailed p-

value 

Sex -0.21 0.2143
Age -0.39 0.0158
Pacman Experience {Newbie, Beginner, 
Intermediate, Expert} 

-0.19 0.2630

Gamer Kind {No Idea, Casual, Hardcore} -0.12 0.4778
 

Aside from the immediate value of accurate predictions, a 
brief analysis of the trends of behavioural features as 
recorded during algorithm operation should contribute to the 
player knowledge agenda. The analysis was performed on 
one of the archived games chosen randomly. Accuracy of 
prediction for this game was 70%. First we compared the 
firing frequency of features. Certain features that previously 
had been proven important, mainly concerning Hunting-
related behaviours, could now only fire relatively 
infrequently. For example, the highest ranking feature in 
table 7.3 was A4_Hunt Even After Pill Finishes, yet this now 
fired ~5% as often as the lower ranked C5_Moves With No 
Points Scored (which could fire in any mode). Since 
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predictions are based on reported values, feature importance 
becomes dependent on frequency of firing. Thus the most 
important features were those relating to Points or lack of 
Points, and distance to the Ghosts. The value of features also 
provided information. For instance, for the analyzed game 
the distance measure during Hunt mode had an average of 
13.49, while the distance at other times averaged 8.93 (both 
Manhattan distance). This suggests a player who prefers to 
get further away from the Ghosts during Hunt mode, which 
seems counter-intuitive until we recall the strategy of using 
the Ghost repelling effect of Pills to win breathing space to 
collect the Dots. Such analysis of feature trends could 
improve their utilization in future work. 

VI. CONCLUSIONS 
We have described a method for in-game real-time player 

modeling based on a Decision Theoretic predictive 
algorithm, and implemented in our Pacman test-bed. It was 
tested on players with a range of experience of playing 
Pacman, and the results examined to determine new valuable 
information on the behavior of players. 

The described methodology would benefit from further 
tests, with greater variance in the demographic background 
of subjects. Of particular importance in this method is 
deciding the right questions to ask of the results. 

A. Future Work 
Three possible improvements to the algorithm suggest 

themselves as especially valuable. These are: extending 
predictions beyond the next state to a full path from the 
look-ahead tree; adding consideration of longer-term 
sequences of moves than the look-ahead tree can handle; and 
dynamically adjusting feature weights in response to the 
results of the player classifier. 

Currently, the algorithm predicts only the player�’s next 
move. However, it does so by calculating the utilities of 
entire future paths, and these paths could form the basis of a 
more detailed prediction. The reason why this was not done 
was because in each new state, the last state�’s predicted path 
would need to be integrated with a new predicted path, or 
even with every path in the look-ahead tree. This would be 
quite a complex implementation task, and might raise many 
questions requiring extensive testing, hence an issue for 
future work. To implement the idea, the first requirement 
would be storage. Exactly what would be stored from the 
look-ahead tree with its utility weights, and how would it be 
updated in subsequent levels? At one extreme, an entire tree 
could be stored, its weights decaying to 0 in order to 
decrease its influence over time. The latter idea brings up the 
requirement for an update policy, which in turn is closely 
related to the need for an integration of past and current 
predictions. All in all, these would be complex questions. 

Current results suggest that while we can calculate a 
utility for a short series of moves (which we could call a 
plan), often the player will be considering a much wider 
picture, involving more moves than it is practical to 

calculate a utility for. Plans of this nature, which we would 
call strategies, would require a higher level of abstraction 
than the look-ahead tree can represent and still be 
computationally viable. 

If we defined medium- to long- term strategies and their 
utilities using ML methods, then instead of building 
weightings of all strategies possible from a position, our 
algorithm would learn some set of favorable strategies. This 
favors an inductive approach over a deductive one, which as 
well as being computationally efficient, is assumed to be 
more similar to human cognition and thus more suitable for 
a player modeler. 

Having incorporated features of play, as play progresses 
some subset of the chosen features should be reflecting the 
decisions of the player. If all their possible choices at the 
current state appear equally likely, we may not be able to 
make a confident prediction, but then once they make a 
choice whatever they decide will indicate what their play 
preference was. This a posteriori information should be used 
to pick out those features in the search tree relating only to 
the direction the player actually went in. The weights of 
these features can be increased to reflect those play 
preferences that they did in fact correspond to. Adjusting 
weights to maintain high accuracy of predictions would 
allow the method to improve its player model in real-time. 

APPENDIX A 
The full list of features used is reproduced below. 

Descriptions in column 2 are in natural language first, and 
then pseudo-code. Prefix letters in the name indicate the 
behavioral trait the feature was supposed to represent. A for 
aggression, C for caution, D for decisiveness, P for planning, 
and S for the simple count of a variable. More detail is 
available in [14]. 

 

A1_Hunt 
Close To 
Ghost 
House 

Counts instances where Pacman follows the 
Ghosts right up to their house while attacking 
them. 
while(PacAtkBool = True) { 
if(dist(Gst{1,2}XY, HseXY) < 3 & 
dist(PacXY, HseXY) < 5) then 
Output++ } 

A4_Hunt 
Even After 
Pill 
Finishes 

How often the player chases the ghosts until 
after the Pill effects wear off 
while(PacAtkBool@State(t-20)){ if( 
dist(PacXY, Gst{1,2}XY) == 1 )then 
Output++ } 

A6_ Chase 
Ghosts or 
Collect 
Dots  

Whether the player uses the Pills to chase ghosts, 
or just continues collecting Dots 
while(PacAtkBool){ if( dist(PacXY, 
Gst{1,2}XY):decrease) then Output++}

C1.b_Times 
Trapped 
and Killed 
By Ghosts 

Threat perception: Pacman trapped in corridor by 
Ghosts, and consequently losing a life. 
if( (C1.a_Times Trapped By Ghosts) & 
Lives@State(t+10):decrease )  
then Output++ 
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C2.a 
Average 
Distance to 
Ghosts 

Average distance the player keeps from ghosts, 
when not on a Pill. 
if(!PacAtkBool) then Output = 
SumAcrossRecords( 
manhattanDist(PacXY, Gst{1,2}XY) / 
NumRecords   

C2.b 
Average 
Distance 
During 
Hunt 

Average distance the player keeps from ghosts, 
when in Hunt mode. 
if(PacAtkBool) then Output = 
SumAcrossRecords( manhattanDist 
(PacXY, Gst{1,2}XY) / NumRecords   

C3_Close 
Calls 
 

How often player comes very close to a ghost, 
when not on a Pill, and doesn�’t die afterwards! 
if( dist(PacXY, Gst{1,2}XY)@State(t-
5) == 1 & Lives@State(t-5) == Lives) 
then Output++ 

C4_Caught 
After Hunt 

Whether chasing the ghosts until after the Pill 
wears off costs a life 
if( PacAtkBool@State(t-1) & 
!PacAtkBool & (Lives > 
Lives@State(t+15))) then Output++ 

C5_Moves 
With No 
Points 
Scored 
 

Count traversals of empty space/visits to squares 
without Dots 
if( !PacAtkBool & Dots=Dots@State(t-
1) & Lives=Lives@State(t-1) & Pills 
= Pills@State(t-1) ) then Output++ 

C7_Killed 
at Ghost 
House 

Counts if the player dies collecting Dots around 
the ghost house 
if( dist(PacXY,HseXY) < 5 & 
!PacAtkBool & Lives > 
Lives@State(t+10) ) then Output++ 

Cherry 
Onscreen 
Time 

Sum of Cherry Boolean flag �– gives total time 
onscreen 

D2 Pacman 
Vacillating 
 

Oscillating movement with no ghosts near. 
if( PacXY != PacXY@State(t+2,3) & 
PacXY@State(t+8,9) & PacXY = 
PacXY@State(t+4..7) & 
PacXY@State(t+10) ) then Output++ 

P1_Waits 
Near Pill to 
Lure 
Ghosts 

How often the player waits beside a Pill to lure 
the Ghosts in �– predicates of sub-features below 
depend on satisfaction of this one 
if(Cycles–Cycles@State(t-5) > 1000 & 
dist(PacXY,PillXY)<8 & dist( PacXY, 
Gst{1,2}XY) < dist(PacXY,Gst{1,2}XY) 
@State(t-5)) then Output++ 

P1.a_Lure: 
Count 
Moves 
While 
Waiting for 
Ghosts 

During execution of the feature above, this 
counts how much Pacman moved after he got 
close to the Pill, while the ghosts were still far 
away 
Predicate cannot be expressed 
concisely here 

P1.c_Lure: 
Number 
Ghosts 
Eaten After 

Counts how many Ghosts Pacman eats after 
doing a lure 
while( PacAtkBool ){  
if( Points > Points@State(t-1)+99 ) 

Lure then Output++ } 

P1.d_Lure: 
Caught 
Before 
Eating Pill 

Records if Pacman fails to complete the lure, 
because he was caught before eating the Pill 
if( Lives < Lives@State(t-1) ) then 
Output++ 

P4.a 
Average 
Speed 
Hunting 1st 
Ghost 

Count moves taken on average when Ghost 1 is 
Hunted and caught 
while( PacAtkBool ){  
if( Points <= Points@State(t-1)+99 ) 
then Output++ } 

P4.b 
Average 
Speed 
Hunting 2nd 
Ghost 

Count moves taken on average when Ghost 2 is 
Hunted and caught 
while( PacAtkBool ){  
if( Points <= Points@State(t-1)+199)
then Output++ } 

Points_Max Max Points value 

S2.a_Lives 
Gained 

Count number of times Pacman gained lives �– 
i.e. ate a Cherry 

S2.b_Lives 
Lost 

Count number of times Pacman lost lives �– i.e. 
caught by ghost 

S4_Teleport 
Use 

Count the number of times Pacman uses a 
teleporter. 
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