

Abstract�—We describe the results of a modeling
methodology that combines the formal choice-system
representation of decision theory with a human player-focused
description of the behavioral features of game play in Pacman.
This predictive player modeler addresses issues raised in
previous work [1] and [2], to produce reliable accuracy. This
paper focuses on using player-centric knowledge to reason
about player behavior, utilizing a set of features which describe
game-play to obtain quantitative data corresponding to
qualitative behavioral concepts.

I. INTRODUCTION
With this paper we present the results from a novel real-

time player modeling algorithm that attempts to predict each
move that a human player makes in Pacman. These
predictions are compared with actual player activity. We
suggest that the results of this comparison form a model, and
after enough instances of play, analysis of this model should
form a valuable picture of player behavior. Whether they
follow the predicted path or deviate from it, some insight
should still be possible.

Predictive player modeling works by considering the
player�’s in-game goals as equivalent to some target function
of the game state and calculating this function using
observed player data [3], [4], [1]. Consideration of the
player�’s goals or utilities is central to this; broadly speaking
the predictive modeler will use real-time observation of play
habits to determine player preference for competing
potential game states. In [5] we discussed how games can be
described using formal or semi-formal structured
specification systems. By extension of this approach, we can
use a decision theoretic formulation to model the short-term
elements of the game that are important to a player �– the
player�’s utilities �– and predict the player�’s next actions. That
is, we can calculate a ranking for all the choices available to
the player, based on the utilities associated with the game
states produced by each choice.

In other work [4], preference learning has been
unsupervised, building the classes or features of preference
through on-line learning. By contrast, in our algorithm
definitions of player utilities in Pacman will be based on the
game-play features described in section II.

Ben Cowley is with the Centre for Knowledge and Innovation Research,

Helsinki School of Economics, Fredrikinkatu 48a 9krs, 00100 Finland.
(phone: +358 40 353 8339; e-mail: zenphd@gmail.com).

Darryl Charles, Michaela Black and Ray Hickey are with the School of
Information and Computer Engineering, University of Ulster, Coleraine,
BT52 1HQ, United Kingdom. e-mail: {dk.charles; mm.black;
rj.hickey}@email.ulster.ac.uk

A. Previous Work
Our original inspiration in formulating game-play in terms

of Decision Theory came from [6]. Their approach combines
a rational, utility-maximizing agent design, with a taxonomy
of emotional states drawn from the literature [7]. Emotions
are implemented as transformations of the decision-making
situation described for the rational agent, thus empowering
the agent to manipulate its own decision-making process,
and effect non-rational behavior. In order to facilitate our
approach, we have replaced the emotional part of the model
with utility calculation functions �– in this paper they are
derived from the features of play behavior described in the
next section.

This provides the major novelty of the approach �–
although predictive player modeling has been done before,
for example in [3], as far as we know there are no other
attempts to incorporate knowledge gleaned from data mining
of players�’ recorded games into the utility or preference
calculation functions of the modeler.

Our previous work had two main problems: the non-
empirical calculation of utilities in both papers, and the tree-
based approach of [2] for searching the game�’s possibility
space. This evaluated temporal-sequences in post-hoc
fashion, estimating qualities (like utility) of single states, and
accumulating the estimations. For the first problem, it is
clear that utilities should draw on observed behavior if
possible, but the second problem may be less clear.

One essential difference between Pacman and games like
Chess or Draughts (where look-ahead trees have been tried
and proven [8]) becomes apparent when evaluation of the
utility of states is attempted. The locations of entities (the
sum of which is referred to as a player�’s position in board
games), in Pacman is not enough to fully describe the
subtleties of the game because the game is not turn-based,
and so the relative timings of parallel deterministic event
sequences is important to play mechanics. Our features
describe player behavior across multiple states, as in most
cases the core behavior that a feature is trying to capture
cannot be reasoned about from the perspective of a single
state. Thus the estimation of most features has an inherent
time-series structure and solves the second problem.

Incorporating these features required a fundamental
change to the algorithm because the original used post-hoc
utility calculation. This means that the calculation of utility
at a given depth only referenced the single state from the tree
node at that depth. Thus, the relationship that the referenced
state had with the features from the previous or next states

Analyzing Player Behavior in Pacman using Feature-driven
Decision Theoretic Predictive Modeling

Ben Cowley, Darryl Charles, Michaela Black and Ray Hickey

978-1-4244-4815-9/09/$25.00 ©2009 IEEE 170

had to be inferred, if it was calculated at all.
 This may work for game playing AI or bots, that have the

aim of beating the player, but when the aim is to model the
player some account must be made of the player�’s point of
view. A human player�’s cognition has a strong time-
sequence orientation [9]. Also during faster, more stressful
game-play some players may begin to focus on a select
number of evolving features, and disregard the full scope of
detail of the current state [10]. Thus in order to model the
player our algorithm had to be altered; its operation is
described in section III.

In section IV we describe how the experiment was
prepared and data collected. Then in section V we give the
results of the tests, and describe how valuable player-related
information can be extracted from the modeler�’s output.
Finally section VI provides our conclusions.

II. FEATURES OF GAME-PLAY
Ultimately player utility represents the value of a process

of play, for example the process of collecting all the Dots in
an area, or getting a Pill then chasing Ghosts. Utility for a
process is found by considering the sequence of states in
which the process occurs, programmatically extracting some
knowledge of what the player has been doing in that
sequence, and applying some valuation to that knowledge.

Knowing what the player does in a sequence of play
requires codifying all the pertinent things they are able to do
within the closed system of the game. For example, a player
can usually move pieces or an avatar. The way they move
very often has qualifiers, such as quick or aggressive
movement. These can be codified as behavioral features.

In more detail, data from players is described by in-game
variables, logged at significant points of change in the game
state. �‘Significant�’ in this case is defined as any action of
any of the game agents which affects the state of game and
cannot be interpolated from adjacent states in the log.
Extracting features involves identifying player �‘behaviors�’
over sequences of one or more game state variables.
Behaviors can be defined as macro level (i.e. more than one
state change) game play actions within repeating situations.
In other words, they are patterns of player action that could
be observed to be consistent across repetitive game
situations by a hypothetical third party observer.

Our process for deriving features was to work from the
general to the specific, a top-down approach that maximizes
the chance of defining all the features necessary to express
distinct player behaviors. The first step was to create a list of
high-level behavioral traits that can be expressed, either
positively or negatively and to varying degrees, in most
games and by most players. The list comprises Aggression,
Caution, Planning, Decisiveness, Thoroughness, Control
Skill and Resource Hoarding, and is repeated with detail
below. Having this list, we tried to posit distinct features of
play in Pacman that represented a behavioral aspect from the
list, as many as it seemed were plausible. A group of
aggregate features was also specified to hold simple counts

such as number of lives gained.
The set of high-level traits was specified with regard to a

generic concept of play in contemporary games, and thus
applicable to any given player and game. To suitably limit
the mode of investigation, the physical reactions of players
(e.g. facial, galvanic skin response, other biometrics) were
not recorded �– the only concern was how player actions
reflect their interaction with the mechanics of a game. In
studying how players interact with games we covered
systems of play and modes of interaction [11], as well as
generic motivations for play [12] and player type [13].
Considering these models together gave us a picture of the
forms of behavior that can be expressed by most players in
many games. The list was not designed to be complete but
only be comprehensive enough to cover Pacman and yet still
be generic; it is presented in no particular order:

Aggression: describes forward and hasty action with

respect to opponents or obstacles. In Pacman this must relate
to how consistently and riskily a player chases after all the
ghosts after eating a Pill.

Caution: describes how much the player guards their
avatar, lives, or other representation of failure risk. In
Pacman, this might be how much distance they consistently
keep between Pacman and the ghosts when not in the
Hunting state.

Planning: is achieving higher level goals with a
premeditated, linked series of actions. A Pacman example
could be luring Ghosts near to a Pill, then eating them all.

Speed: primarily, this is how fast the player completes
discrete segments of game play, be they levels, objectives or
even moves (as in chess); secondarily, whether they divert
from the �‘quickest-possible�’ approach for any reason.

Chasing high score/optimal result: this would often be a
meta-behaviour, of replaying the game to gain ever-higher
scores. Classically, this is the key motivator in Pacman.

Decisiveness: describes players who don�’t backtrack, or
make oscillating-type movements. This goes to skill of using
the controls also, but the distinction is that decisiveness
operates on a macro scale.

Thoroughness: is attempting to do or see everything
available, also solving puzzles by exhaustion of
combinations. This is hard to define in Pacman, since the
only way to progress is to collect everything.

Control Skill: means fine, precise and detailed command
of control schemes, such as accuracy in a shooter or
knowledge of hotkeys in an RTS. In Pacman, this is mostly
how well corners are turned and Ghost near-misses are
handled, and perhaps also how quickly local sections of Dots
are cleared.

Resource hoarding: games are often described as having
an �‘economy�’: ammo and health in combat games, items and
virtual currency in RPG�’s are just two examples. Resources
in Pacman are hard to delimit from points, but lives and fruit
are valid examples. Pills are often hoarded as �‘insurance�’, to
deploy at strategic moments.

2009 IEEE Symposium on Computational Intelligence and Games 171

Under each of these generic headings, we developed a set
of specifications of features of game play that pertain
directly to Pacman, along with the group of simple aggregate
features. Developing specifications involved first observing
patterns of play in Pacman games, so that the various
patterns of play performed in the game were known to us.
The intent of the player in performing each pattern of play
was associated with a generic behavior as listed above. A
description of the pattern of play was written in natural
language based on its observation and associated generic
behavior. Having specified patterns of play, feature
development then entailed finding and observing patterns in
the logs of played games, and deconstructing their operation
to the most atomic level possible so that each pattern of play
could be codified as an algorithm.

Working from the first principles of these specifications,
features were implemented in C++ in our Pacman game
engine. Thus reasoning about the specification of a
behavioral feature inspired the algorithm which derived that
feature. Most of the features were derived by the same basic
algorithmic procedure; that is, iterating through the states
from a raw data log file the algorithm searches for constraint
harness parameters to satisfy. The constraint harness is a set
of logic statements, and the parameters are simply numeric
thresholds. An example is the initial constraint for the first
Aggression feature, A1_Hunt Close To Ghost House:

if(PacAttack && (
myDist(xGhost[0],yGhost[0],xHse,yHse) < 3 ||
myDist(xGhost[1],yGhost[1],xHse,yHse) < 3))

This simply says execute the �‘then�’ portion of the �‘if�’
statement when Pacman is Hunting the Ghosts, and one
Ghost is within a manhattan distance of 3 from the centre of
their House. Within the �‘if�’ statement is more logic to induce
whether Pacman is closing in on the House, and what
happens when he gets there. If the right conditions are
satisfied then the function increments a counter which is
returned as the final result once the function has iterated
through all the raw data. More complicated functions might
look at a wider spread of the raw data, and try to meet more
complicated constraints, but the algorithmic pattern is much
the same for most features.

We applied these features across only a few projected
states of play, and constructed a mapping from the current
game state to one weighted feature vector for each path in
the look-ahead tree. These vectors represent the player�’s
possible choices, and evaluating their utility allowed us to
predict the player�’s most likely choice. The entire list of
features used is described in Appendix A.

III. ALGORITHM OPERATION
The changes to our previous work described above

implied an update to our modeling algorithm, reflected in the
new decision theoretic equation (1), below. We replaced the
summation of utilities for each state in a sequence with a
single utility for the whole sequence, corresponding to one

game-play feature. This update radically simplifies the
formula by removing the requirement to specify the utility of
every state. All that is needed is the sequences of states that
comprise a possible course of action, which is equal to a
single path from the look-ahead tree. However many of the
original definitions [2] are still relevant to understanding, so
a brief description follows.

A rational player�’s decision making situation involves
picking from a finite set of the alternative courses of
action (or plans), that are available to execute. A member of

such as can be thought of as a plan consisting of
consecutive moves extending to the future time . The
(computational) limit on this look-ahead time will be �–
in our case will almost always equate since for any
one plan, only Pacman�’s death or the end of the level will
result in a cessation of planning. Such an action plan occurs
in a state-delimited world, formalised as the set of all
possible states of the world . So each is a sequence of
states , starting with a state �‘adjacent�’ to the current
state and ending with . Since all the states considered in
each decision-making situation are limited by they
form a subset of which we call . To obtain the necessary
ordering of when selecting from so that the sequence
makes sense (since is unordered), we identify each state
by its distance in the future, i.e. . In terms of the look-
ahead tree, is a path and (the last state in) is a leaf
which can uniquely identify the path.

In Pacman only the current state is known: no current
information is hidden but future states depend on stochastic
elements, so it is a game of semi-perfect information. Thus
our probability function represents the uncertainty of the
player as we project forward in time, resulting in a
probability distribution over the state space . This
temporal projection is expressed as ;
which means that the action given the current state
results in the probability of the projected states

. Specifically, will be the
probability assigned by to the state .

This paper retains the definitions established in previous
papers, but alters the application of utility. The utility
function now applies to an entire sequence-of-states or
plan , rather than just one state: encoding the desirability to
the player of the projected sequence and mapping it to
numerical output . is a member of the set of
all implemented features, and will choose different
features depending on the states in plan (i.e. some
features are not relevant in some states). maps states to
a real number, and the summed output of multiple gives
the utility score of a plan : the best scoring plan predicts
the next move.

 (1)

172 2009 IEEE Symposium on Computational Intelligence and Games

We implemented this equation using a look-ahead tree �–
described in the schematic in figure 1 below �– next we
explain some aspects of how this works in Pacman.

A. The Tree of Future Moves
The goal of implementing equation (1) is to search the

tree of utility-weighted future moves. Nominally, this tree
would be built by finding all possible combinations of
positions which the in-game actors can occupy when they
move one step, and then iterating that calculation for a
computationally tractable number of steps. Having enough
steps required us to improve the execution speed of the

algorithm. Standard methods for pruning a game theoretic
look-ahead tree, such as the alpha-beta heuristic, are less
applicable to time-based games. By considering the look-
ahead activity from the player perspective, we conceived an
effective yet simple optimization. From the player�’s point of
view, future ghost positions are a best a probability
distribution: thus we do not need to calculate exhaustive
look-ahead trees. Reduction of the data space dimensionality
can be achieved by transforming the combination of Pacman
and the Ghosts�’ possible moves into the set of Pacman�’s
possible moves plus a probability distribution over the
Ghosts�’ possible moves with respect to Pacman�’s moves.

Now
t=0

1
t=1

mp
t=1

. . .

Build look-ahead tree up to a
predefined depth D
At each ply t=i+1, number of
states corresponds to the
number of moves m that were
possible for Pacman from all
the parent states p at ply t=i

. . .

1
t=D

mp
t=D

. . .
To predict the direction of
players�’ next move (i.e. a state
at t=1), calculate utility of each
path�’ from root to leaf in the
tree

Now
t=0

1
t=1

1
t=D

...

This is one path A in the look-ahead
tree, or one possible way for Pacman
to move for the next D states.

utility(A) = f utility(f(A))

Behavioural features from
previous chapters were
designed to work over a
path, and so are used here
to calculate utility.

Predicted
action a = Direction(t=0 t=1) : max

utility(A1t=D)

:
utility(Akt=D)

Where each path A ends in one of k unique leaves from
the look-ahead tree; and Direction() gives the next move
direction for Pacman from the highest scoring path.

Where f is a feature defined in chapter 4,
such as A4_Hunt Even After Pill Finishes

c

c

c

Fig.1. Schematic of the operation of the Decision Theoretic feature-based predictive player modeling
algorithm. Multiple features contribute to the utility of each path in the tree, to evaluate action a.

2009 IEEE Symposium on Computational Intelligence and Games 173

A random selection from this distribution is what drives
Ghost movement in the game engine. Thus the functionality
was readily available to calculate the Ghost positions in the
look-ahead tree. We chose to select the highest probability
position automatically. Since the choice mechanism for
�‘real�’ Ghost movement was stochastic, stochastic choices in
building the look-ahead tree could cause the predicted
moves to diverge from actual movement, more than
necessary. Although it was not necessary to predict exact
Ghost locations, using approximately the right locations
would improve the relevance of many of the features
calculated. Also, all probabilities of future states were
rendered equal due to the way the look-ahead tree was
calculated with respect to Ghost movements.

By branching only for the potential moves of Pacman, and
not the Ghosts, we reduce tree branching by a factor of at
least ~2.25 for every Ghost. The tree branching factor
corresponds to the number of possible moves for all actors
considered at each step, which is equal to the connectedness
of the square the actor is in. Our test-bed game map has 182
navigable squares. Of these, 143 are connected to 2 squares;
32 are connected to 3 squares; and 7 are connected to 4
squares. Therefore, if we consider the future moves of a
number of actors , the average branching factor would be
given by equation (2):

 (2)

We only consider the human player, so the nominal
average branching factor equals 2.25. In a given level or
game players will traverse each map square more than once,
and the frequency of traversal will vary across the map. By
their nature, the junction squares will be traversed more
often, which implies the average branching factor will be
higher than given by equation (2). Indeed in later tests when
we analyzed the time taken at each depth of tree search,
every increase of depth by 1 multiplied the time taken to
calculate the algorithm for a single state by ~2.75. That
implies that the actual branching factor is ~2.75 on average.

Finally, in look-ahead tree terms equation (1) specifies the
tree of potential next states up to a given depth and uses
behavioral features adapted to work over short sequences of
states, to return a utility value for an entire path of the future
moves tree. Thus the predicted next move, the first in the
highest-scoring path a, corresponds to the direction that
leads to the highest utility and is the final output of our
algorithm. This was tested as follows.

IV. EXPERIMENTAL SET UP
Data for the experiment was composed of the logged

games of 37 volunteer players from among the under-
graduate classes in the host university. They were also given
a short survey to ascertain the following personal details.

• Sex
• Age
• Gaming habit, choice of: Hardcore, Casual, No Idea

• Pacman Experience, choice of: Newbie, Beginner,
Intermediate, Expert

• Top 3 game-play styles enjoyed; unrestricted answer
• One style of game play hated; unrestricted answer
The last two questions were not restricted to pre-defined

game styles, because it was felt that player understanding of
the terms describing styles of game play is so variable that
better results would be obtained by allowing players to use
their own terms and interpreting them categorically.

A. Game Description
Although it is a common game, the Pacman test bed used

was an interpretation of the original Namco game rather than
a clone, and so below we describe our version. In all
versions of Pacman the goal is to move around the game
level and obtain all the collectables, thus progressing to the
next level. Points are awarded for collectables and eating
Ghosts. Our version of Pacman�’s game play is described in
the following list (Initial Caps are used to describe game
entities and their actions in this description; �‘the player�’ and
�‘Pacman�’ are inter-changeable terms).
The game world is a 20x20 matrix which constitutes a level,

and each element of the matrix can be Wall, Pill, or Dot.
Pacman and the Ghosts (the in-game actors) Move about the

level along two axes, horizontal and vertical.
Pacman Eats Dots & Pills when he Moves over them.
When a Dot or Pill is Eaten, it’s ‘element’ becomes empty.
By Eating a Pill, Pacman switches the game state from one

where he is vulnerable to the Ghosts (the normal state), to
one where he is able to Eat the Ghosts (the Hunt state).

If Pacman collides with a Ghost, he can Eat the Ghost if in
Hunt state, otherwise Pacman is Eaten and loses a Life.

Eaten actors re-spawn at their original start point, unless
Pacman has run out of lives, when the game is over.

Pacman must Eat all Pills and Dots to finish, whereupon the
level ends whether or not the player was still within the t
cycles started from recently Eating a Pill.

Points are scored as follows: 10 per Dot, 50 per Pill, (100*(2
^ Number of Ghosts Eaten)) per Ghost Eaten after a Pill.

Ghosts start in a central box area called their ‘House’.
Ghosts are permeable and do not interact with Dots or Pills

or obstruct each other.
Difficulty is measured by speed of Ghost movement,

probability distribution for their movement direction, and
length of Hunts conferred by Eating Pills. Ghost speed
increases every 5 levels starting in the 2nd level.
Probability changes 5 times after the initial setting, at the
start of levels 2, 4, 7, 11 and 16. Length of Hunts is a
continuous function of the level number and quantity of
Pills left in that level. This lends Ghosts some reactivity to
the number of times they’ve been Hunted, as they run
away for less time each Hunt.

Ghosts move according to a pseudo-random probabilistic
control function based on Pacman’s relative location and
the (increasing) difficulty level. In the normal game state,
the probability of moving closer to Pacman is higher than

174 2009 IEEE Symposium on Computational Intelligence and Games

the probability of moving to any other adjacent point. The
direction is reversed when the game is in the Hunt state.

V. TEST RESULTS
The logged games of 37 players were tested off-line in

order to allow full exploration of parameter combinations,
which under certain settings required up to 32 hours of
computation1. If testing had been performed during actual
play, computational constraints would never have allowed
any deep look-ahead tree searching. The exploratory
analysis of the parameters of the algorithm formed the initial
stage of testing, and is explained in greater detail in [14].

Once we established optimal values for algorithm settings,
and determined the features to be included in utility
calculation, we tested the set of archived games. In order to
allow algorithm settings time to converge, we excluded from
testing any game that had only two levels or less. To
illustrate the performance of the algorithm over a single
game, figure 2 shows the running accuracy total that is
obtained every state by the formula: number of correct
predictions / number of states.

Fig.2. Running total for prediction algorithm accuracy on a single game.

As this figure shows, accuracy varies for several hundred
states (the average number of states per level was 327) and
then settles into a small range. Since it drops from 100% in
the first few states, it is capable of high accuracy
immediately and does not have to learn accurate predictions.
The accuracy results for all games in the archived test-set are
shown in figure 3, giving a clear impression of the overall
level of accuracy achieved, and the variation between games
that can occur even for a single player. The final accuracy
from all games was 70.5%: this represents a lift of ~26%
from the default value of ~44% that would be obtained by
random guesses of next direction at every position on the
game map. The output of the tests gave the raw data
necessary to begin interpretation of the behavior of players.

A. Player Observations
The core of our approach involved predicting player

1 At depth of 9, look-ahead tree search took ~14 seconds/state; test

games were about 9000 states.

actions and comparing these predictions with actual player
activity. The validation of these predictions forms a model
with the ultimate aim that over enough instances of play this
model would embody valuable information on player
behavior. The value of this information is based on the
features describing game-play, which the modeler used to
reason over players�’ actions. The log of the player�’s game
can thus be composed into a set of occurrences of the
features describing their behavior, and the patterns of
occurrence can be interpreted to give an insight into the
player at an even higher level.

Fig.3. The best accuracy scores for the 105 archived games from 37 players.

Categorical partitions of the players, based on the self-
reported survey data Gamer kind, Pacman experience, Age
and Sex, all correlate negatively with prediction accuracy as
shown in table 7.8. Only Age is anywhere near a strong
correlation though. Two thirds, or 6 of the players aged over
25 years are in the lowest 10 predicted accuracies.

TABLE 1 SPEARMAN COEFFICIENTS AND P-VALUES FOR CORRELATIONS OF

CATEGORICAL AND ACCURACY DATA.
Player Data Category Spearman

Coefficient
2-tailed p-

value

Sex -0.21 0.2143
Age -0.39 0.0158
Pacman Experience {Newbie, Beginner,
Intermediate, Expert}

-0.19 0.2630

Gamer Kind {No Idea, Casual, Hardcore} -0.12 0.4778

Aside from the immediate value of accurate predictions, a
brief analysis of the trends of behavioural features as
recorded during algorithm operation should contribute to the
player knowledge agenda. The analysis was performed on
one of the archived games chosen randomly. Accuracy of
prediction for this game was 70%. First we compared the
firing frequency of features. Certain features that previously
had been proven important, mainly concerning Hunting-
related behaviours, could now only fire relatively
infrequently. For example, the highest ranking feature in
table 7.3 was A4_Hunt Even After Pill Finishes, yet this now
fired ~5% as often as the lower ranked C5_Moves With No
Points Scored (which could fire in any mode). Since

45
50
55
60
65
70
75
80
85
90
95

100

1 65 12
9

19
3

25
7

32
1

38
5

44
9

51
3

57
7

64
1

70
5

76
9

83
3

89
7

96
1

10
25

Running Accuracy TotalAccuracy %

States

65
66
67
68
69
70
71
72
73
74
75
76

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

% AccuracyAccuracy %

Played games

2009 IEEE Symposium on Computational Intelligence and Games 175

predictions are based on reported values, feature importance
becomes dependent on frequency of firing. Thus the most
important features were those relating to Points or lack of
Points, and distance to the Ghosts. The value of features also
provided information. For instance, for the analyzed game
the distance measure during Hunt mode had an average of
13.49, while the distance at other times averaged 8.93 (both
Manhattan distance). This suggests a player who prefers to
get further away from the Ghosts during Hunt mode, which
seems counter-intuitive until we recall the strategy of using
the Ghost repelling effect of Pills to win breathing space to
collect the Dots. Such analysis of feature trends could
improve their utilization in future work.

VI. CONCLUSIONS
We have described a method for in-game real-time player

modeling based on a Decision Theoretic predictive
algorithm, and implemented in our Pacman test-bed. It was
tested on players with a range of experience of playing
Pacman, and the results examined to determine new valuable
information on the behavior of players.

The described methodology would benefit from further
tests, with greater variance in the demographic background
of subjects. Of particular importance in this method is
deciding the right questions to ask of the results.

A. Future Work
Three possible improvements to the algorithm suggest

themselves as especially valuable. These are: extending
predictions beyond the next state to a full path from the
look-ahead tree; adding consideration of longer-term
sequences of moves than the look-ahead tree can handle; and
dynamically adjusting feature weights in response to the
results of the player classifier.

Currently, the algorithm predicts only the player�’s next
move. However, it does so by calculating the utilities of
entire future paths, and these paths could form the basis of a
more detailed prediction. The reason why this was not done
was because in each new state, the last state�’s predicted path
would need to be integrated with a new predicted path, or
even with every path in the look-ahead tree. This would be
quite a complex implementation task, and might raise many
questions requiring extensive testing, hence an issue for
future work. To implement the idea, the first requirement
would be storage. Exactly what would be stored from the
look-ahead tree with its utility weights, and how would it be
updated in subsequent levels? At one extreme, an entire tree
could be stored, its weights decaying to 0 in order to
decrease its influence over time. The latter idea brings up the
requirement for an update policy, which in turn is closely
related to the need for an integration of past and current
predictions. All in all, these would be complex questions.

Current results suggest that while we can calculate a
utility for a short series of moves (which we could call a
plan), often the player will be considering a much wider
picture, involving more moves than it is practical to

calculate a utility for. Plans of this nature, which we would
call strategies, would require a higher level of abstraction
than the look-ahead tree can represent and still be
computationally viable.

If we defined medium- to long- term strategies and their
utilities using ML methods, then instead of building
weightings of all strategies possible from a position, our
algorithm would learn some set of favorable strategies. This
favors an inductive approach over a deductive one, which as
well as being computationally efficient, is assumed to be
more similar to human cognition and thus more suitable for
a player modeler.

Having incorporated features of play, as play progresses
some subset of the chosen features should be reflecting the
decisions of the player. If all their possible choices at the
current state appear equally likely, we may not be able to
make a confident prediction, but then once they make a
choice whatever they decide will indicate what their play
preference was. This a posteriori information should be used
to pick out those features in the search tree relating only to
the direction the player actually went in. The weights of
these features can be increased to reflect those play
preferences that they did in fact correspond to. Adjusting
weights to maintain high accuracy of predictions would
allow the method to improve its player model in real-time.

APPENDIX A
The full list of features used is reproduced below.

Descriptions in column 2 are in natural language first, and
then pseudo-code. Prefix letters in the name indicate the
behavioral trait the feature was supposed to represent. A for
aggression, C for caution, D for decisiveness, P for planning,
and S for the simple count of a variable. More detail is
available in [14].

A1_Hunt
Close To
Ghost
House

Counts instances where Pacman follows the
Ghosts right up to their house while attacking
them.
while(PacAtkBool = True) {
if(dist(Gst{1,2}XY, HseXY) < 3 &
dist(PacXY, HseXY) < 5) then
Output++ }

A4_Hunt
Even After
Pill
Finishes

How often the player chases the ghosts until
after the Pill effects wear off
while(PacAtkBool@State(t-20)){ if(
dist(PacXY, Gst{1,2}XY) == 1)then
Output++ }

A6_ Chase
Ghosts or
Collect
Dots

Whether the player uses the Pills to chase ghosts,
or just continues collecting Dots
while(PacAtkBool){ if(dist(PacXY,
Gst{1,2}XY):decrease) then Output++}

C1.b_Times
Trapped
and Killed
By Ghosts

Threat perception: Pacman trapped in corridor by
Ghosts, and consequently losing a life.
if((C1.a_Times Trapped By Ghosts) &
Lives@State(t+10):decrease)
then Output++

176 2009 IEEE Symposium on Computational Intelligence and Games

C2.a
Average
Distance to
Ghosts

Average distance the player keeps from ghosts,
when not on a Pill.
if(!PacAtkBool) then Output =
SumAcrossRecords(
manhattanDist(PacXY, Gst{1,2}XY) /
NumRecords

C2.b
Average
Distance
During
Hunt

Average distance the player keeps from ghosts,
when in Hunt mode.
if(PacAtkBool) then Output =
SumAcrossRecords(manhattanDist
(PacXY, Gst{1,2}XY) / NumRecords

C3_Close
Calls

How often player comes very close to a ghost,
when not on a Pill, and doesn�’t die afterwards!
if(dist(PacXY, Gst{1,2}XY)@State(t-
5) == 1 & Lives@State(t-5) == Lives)
then Output++

C4_Caught
After Hunt

Whether chasing the ghosts until after the Pill
wears off costs a life
if(PacAtkBool@State(t-1) &
!PacAtkBool & (Lives >
Lives@State(t+15))) then Output++

C5_Moves
With No
Points
Scored

Count traversals of empty space/visits to squares
without Dots
if(!PacAtkBool & Dots=Dots@State(t-
1) & Lives=Lives@State(t-1) & Pills
= Pills@State(t-1)) then Output++

C7_Killed
at Ghost
House

Counts if the player dies collecting Dots around
the ghost house
if(dist(PacXY,HseXY) < 5 &
!PacAtkBool & Lives >
Lives@State(t+10)) then Output++

Cherry
Onscreen
Time

Sum of Cherry Boolean flag �– gives total time
onscreen

D2 Pacman
Vacillating

Oscillating movement with no ghosts near.
if(PacXY != PacXY@State(t+2,3) &
PacXY@State(t+8,9) & PacXY =
PacXY@State(t+4..7) &
PacXY@State(t+10)) then Output++

P1_Waits
Near Pill to
Lure
Ghosts

How often the player waits beside a Pill to lure
the Ghosts in �– predicates of sub-features below
depend on satisfaction of this one
if(Cycles–Cycles@State(t-5) > 1000 &
dist(PacXY,PillXY)<8 & dist(PacXY,
Gst{1,2}XY) < dist(PacXY,Gst{1,2}XY)
@State(t-5)) then Output++

P1.a_Lure:
Count
Moves
While
Waiting for
Ghosts

During execution of the feature above, this
counts how much Pacman moved after he got
close to the Pill, while the ghosts were still far
away
Predicate cannot be expressed
concisely here

P1.c_Lure:
Number
Ghosts
Eaten After

Counts how many Ghosts Pacman eats after
doing a lure
while(PacAtkBool){
if(Points > Points@State(t-1)+99)

Lure then Output++ }

P1.d_Lure:
Caught
Before
Eating Pill

Records if Pacman fails to complete the lure,
because he was caught before eating the Pill
if(Lives < Lives@State(t-1)) then
Output++

P4.a
Average
Speed
Hunting 1st
Ghost

Count moves taken on average when Ghost 1 is
Hunted and caught
while(PacAtkBool){
if(Points <= Points@State(t-1)+99)
then Output++ }

P4.b
Average
Speed
Hunting 2nd
Ghost

Count moves taken on average when Ghost 2 is
Hunted and caught
while(PacAtkBool){
if(Points <= Points@State(t-1)+199)
then Output++ }

Points_Max Max Points value

S2.a_Lives
Gained

Count number of times Pacman gained lives �–
i.e. ate a Cherry

S2.b_Lives
Lost

Count number of times Pacman lost lives �– i.e.
caught by ghost

S4_Teleport
Use

Count the number of times Pacman uses a
teleporter.

REFERENCES
[1] B. Cowley, D. Charles, M.M. Black, and R.J. Hickey, �“Using

Decision theory for Player Analysis in Pacman,�” Proceedings of the
SAB Workshop on Adaptive Approaches to Optimizing Player
Satisfaction, Roma, Italy: 2006, pp. 41-50.

[2] B. Cowley, D. Charles, M.M. Black, and R.J. Hickey, �“Data-Driven
Decision theory for Player Analysis in Pacman,�” Proceedings of the
Optimizing Player Satisfaction Workshop, Stanford University,
Stanford, Ca: AAAI Press, 2007, pp. 25-30.

[3] D. Thue and V. Bulitko, �“Modeling Goal-Directed Players in Digital
Games,�” Proceedings of Artificial Intelligence and Interactive Digital
Entertainment 06, Stanford, CA, USA: AAAI Press, 2006, pp. 86-91.

[4] J. Donkers and P. Spronck, �“Preference-based Player Modelling,�” AI
Game Programming Wisdom 3, Hingham (MA): Charles River
Media, 2006, pp. 647-659.

[5] B. Cowley, D. Charles, M. Black, and R. Hickey, �“Toward an
understanding of flow in video games,�” ACM Comput. Entertain., vol.
6, 2008, pp. 1-27.

[6] P.J. Gmytrasiewicz and C.L. Lisetti, �“Modeling users' emotions
during interactive entertainment sessions,�” Proceedings of AAAI 2000
Spring Symposium Series. 20-22 March 2000, Stanford, CA, USA:
AAAI Press, 2000, pp. 30-35.

[7] A. Ortony, G.L. Clore, and A. Collins, The cognitive structure of
emotions, New York: Cambridge Uni Press, 1988.

[8] A. Samuel, �“Some studies in machine learning using the game of
checkers,�” IBM Journal of R&D, vol. 3, 1959, pp. 229, 210.

[9] R. Penrose, The emperor's new mind : concerning computers, minds,
and the laws of physics, Oxford; New York: Oxford Uni Press, 1989.

[10] N. Baumann, R. Kaschel, and J. Kuhl, �“Striving for unwanted goals:
stress-dependent discrepancies between explicit and implicit
achievement motives reduce subjective well-being and increase
psychosomatic symptoms,�” Journal of Personality and Social
Psychology, vol. 89, Nov. 2005, pp. 781-99.

[11] K. Salen and E. Zimmerman, Rules of play : game design
fundamentals, London: MIT, 2004.

[12] R. Caillois, Man, play, and games : Translated from the french by
Meyer Barash, New York: Free Press of Glencoe, 1961.

[13] C. Bateman and R. Boon, 21st century game design, London: Charles
River Media, 2005.

[14] B. Cowley, �“Player Profiling and Modelling in Computer and Video
Games,�” thesis submitted at University of Ulster, Coleraine, 2009.

2009 IEEE Symposium on Computational Intelligence and Games 177

